martes, 6 de noviembre de 2007

ciclo de calvin-belson


Formas alternativas de asimilación del CO2



Formas alternativas de asimilación del CO2 en plantas A bajas concentraciones de CO2 (como cuando se cierran los estomas para evitar pérdida de agua en la planta), la Rubisco reaccionara con O2 en vez de CO2. Esta reacción provoca una disminución del porcentaje de carbono fijado y está asociada al fenómeno denominado fotorrespiración. Estos procesos son más graves a temperaturas relativamente altas, disminuyendo la tasa de fotosíntesis (una medida de la capacidad de la planta para asimilar CO2).
Por ello plantas adaptadas a climas cálidos han desarrollado estrategia para optimizar la capacidad de asimilación de dióxido de carbono (plantas C-4 y plantas CAM). Las plantas C4 usan inicialmente la enzima PEP carboxilasa (
fosfoenolpiruvato carboxilasa), que convierte el fosfoenolpiruvato (compuesto de 3C) en oxalacetato (compuesto de 4C) a partir de bicarbonato que se forma por reacción del CO2 con agua (facilitado por la presencia de la enzima anhidrasa carbónica que cataliza esta reacción). La PEP carboxilasa tiene una afinidad muy alta por el bicarbonato, mayor que RubisCO por el CO2. El nombre de este tipo de fotosíntesis proviene, precisamente, de que el primer compuesto orgánico formado (oxalacetato) tiene 4 átomos de carbono.
A partir de oxalacetato se produce
malato (un compuesto más reducido) lo que conlleva una pérdida del poder reductor acumulado en la fotosíntesis. El malato formado desprende el carbono fijado en las inmediaciones de RubisCO, aumentando la concentración de dióxido de carbono respecto a oxígeno en el entorno de esta última enzima. A partir de aquí el proceso es similar al descrito anteriormente (plantas C-3, en las que el primer producto de la asimilación de CO2,es el PGA de 3 átomos de carbono). De esta forma se consigue evitar la actividad oxigenasa de la Rubisco.
La formación de malato y su descomposición ocurren en células diferentes, cada una de ellas provistas de cloroplastos especilizados en llevar a cabo cada una de las dos funciones. Otro tipo de adaptación es el de las plantas con fotosíntesis CAM (de las siglas en inglés "Crassulacean acid metabolism", metabolismo de plantas crasulaceas) frecuente en plantas
xerófitas (plantas adaptadas a ambientes áridos) y que les permite mantener cerrados los estomas evitando la pérdida de agua.

ciclo de calvin-belson


Ciclo de calvin-benson


El ciclo de Calvin (también conocido como ciclo de Calvin-Benson o fase de fijación del CO2 de la fotosíntesis) consiste en una serie de procesos bioquímicos que se realizan en el estroma de los cloroplastos de los organismos fotosintéticos. Fue descubierto por Melvin Calvin y Andy Benson de la Universidad de California Berkeley mediante el empleo de isótopos radiactivos de carbono.
Durante la
fase luminosa o fotoquímica de la fotosíntesis, la energía lumínica ha sido almacenada en moléculas orgánicas sencillas, pero inestables, que van a aportar energía para realizar el proceso (ATP) y poder reductor nicotin-amida dinucleótido fosfato (NADPH+H+) que es la capacidad de donar electrones (reducir) a otra molécula. En general, los compuestos bioquímicos más reducidos (simplificando la cuestión: los que tienen más electrones) almacenan más energía que los oxidados (con menos electrones, también simplificando) y son, por tanto, capaces de generar más trabajo (por ejemplo, aportar la energía necesaria para el movimiento muscular). En el ciclo de Calvin se integran y convierten moléculas inorgánicas de dióxido de carbono en moléculas orgánicas sencillas a partir de las cuales se formará el resto de los compuestos bioquímicos que constituyen los seres vivos. Este proceso también se puede, por tanto, denominar como de asimilación del carbono.
La primera
enzima que interviene en el ciclo y que fija el CO2 atmosférico uniéndolo a una molécula orgánica (ribulosa-1-5-bisfosfato) se denomina RuBisCO (por las siglas de Ribulosa bisfosfato carboxilasa-oxigenasa).
Para un total de 6 moléculas de CO2 fijado, la estequiometría final del ciclo de Calvin se puede resumir en la ecuación:
6CO2 + 12NADPH + 18 ATP → C6H12O6P + 12NADP+ + 18ADP + 17 Pi
Que representaría la formación de una molécula de azúcar-fosfato de 6 átomos de carbono (hexosa) a partir de 6 moléculas de CO2.